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Abstract
A Hilbert space in M dimensions is shown explicitly to accommodate
representations that reflect the decomposition of M into prime numbers.
Representations that exhibit the factorization of M into two relatively prime
numbers: the kq representation (Zak J 1970 Phys. Today 23 51), and related
representations termed q1q2 representations (together with their conjugates) are
analysed, as well as a representation that exhibits the complete factorization of
M. In this latter representation each quantum number varies in a subspace that
is associated with one of the prime numbers that make up M.

PACS numbers: 73.20.Dx, 02.20.Df, 03.65.−w

1. Introduction

Quantum mechanics in a finite-dimensional Hilbert space, which is the main topic of this
paper, was originally studied by Weyl [1], whose work allowed him to establish the relationship
between the Heisenberg commutation relation and the Schrödinger wave equation. However, it
was Schwinger [2] who initiated a systematic study of finite-dimensional quantum mechanics.
The recent developments in our understanding of the foundations of quantum mechanics
that led, among other things, to the possibility of quantum computers, is responsible for the
intensive recent interest in the problem of quantum mechanics in finite-dimensional systems.
Thus, e.g., a protocol was developed in a finite-dimensional space that can implement the
Fourier transformation in a quantum computer [3]. Other applications are to the problem
of definition of conjugate operators and phase operators, e.g. (a very incomplete list) [4–8].
There are many other beautiful applications of finite-dimensional Hilbert spaces. For recent
reviews, see, e.g. [9].

Information and computation may be understood in terms of classical physics [10].
However, the extension of these ideas to the quantum domain [11] enriches our understanding
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of both information theory and quantum mechanics. Thus quantum computers, where
entanglement and superposition of states are essential elements, allow computations believed
to be intractable on any classical computer. The most often quoted example is Shor’s
[12] quantum algorithm for factorizing numbers, while there is no known efficient classical
algorithm for factoring. In this paper we study the relation of factorizability to quantum
physics. Thus we wish to find and characterize physical representations which reflect the
prime factorization of M, the dimensionality of the space of the problem. Our study is based
on Schwinger’s [2] general theory of quantum mechanics in finite-dimensional space in terms
of unitary operators.

Schwinger [2] showed that M-dimensional vector spaces allow the construction of two
unitary operators, U and V (in his notation), that form a complete operator basis, i.e. they
suffice to construct all possible operators of the physical system. This means that if an operator
commutes with both U and V it is necessarily a multiple of the unit operator. These operators
have a period M, i.e.

UM = V M = 1, (1)

where M is the smallest integer for which this equality holds. The eigenvalues of both U and
V are distinct: they are the M roots of unity, i.e. with |x〉 the eigenfunctions of U,

U |x〉 = ei( 2π
M

)x |x〉, |x + M〉 = |x〉, x = 1, . . . ,M.

The operator V is defined over these eigenvectors as

V |x〉 = |x − 1〉. (2)

Schwinger then showed that the absolute value of the overlap between any eigenfunction of
U, |x〉 and any one of V, |p〉, is a constant:

|〈p|x〉| = 1√
M

. (3)

Sets of operators whose eigenvectors satisfy equation (3) are called conjugate; the vector
bases defined by them are referred [13, 14] to as conjugate vector bases (or mutually unbiased
bases). It was further noted by Schwinger [2] that alternative conjugate vector bases may be
constructed. For example, we may let U → U ′ = Un for n < M such that it has no common
factor with M. U ′ has, clearly, the same period and eigenvalues as U. The corresponding V ′

that satisfies the relevant equation, equation (2), was shown to be some power of V .
Our aim in this paper is to expand Schwinger’s analysis and stress its relation to

factorization of M, the dimensionality of the space. A different approach to this factorization
and an interesting application to defining a correlation measure for M-dimensional entangled
density matrices may be found in [15]. We choose to consider a specific example of the
M-dimensional space, namely M points on a line, i.e., we consider discretized and truncated
spatial coordinate x and its conjugate momentum p as our M-dimensional space. This may be
realized by imposing boundary conditions on the spatial coordinate, x, of the wavefunctions
under study, ψ(x), and on their Fourier transforms, F(p) (we take h̄ = 1) [16]:

ψ(x + Mc) = ψ(x), F

(
p +

2π

c

)
= F(p).

Here M is an integer—it is the dimensionality of the Hilbert space, and we term c the
‘quantization length’. As a consequence of the above boundary conditions we have that the
values of the spatial coordinate, x, and the values of the momentum, p, are discrete and finite:

x = sc, s = 1, . . . , M, p = 2π

Mc
t, t = 1, . . . , M.



Factorizations and physical representations 5153

In this case we may replace the operators x and p by the unitary operators

τ(M) = ei( 2π
Mc

)x, T (c) = eipc. (4)

These operators satisfy the basic commutator relation

τ(M)T (c) = T (c)τ (M) e−i 2π
M . (5)

They exhibit the dimensionality (i.e. periodicity) automatically (cf equation (1)):

[τ(M)]M = [T (c)]M = 1, (6)

and we may associate Schwinger’s operator U with τ(M) and his V with T (c) (henceforth
c = 1).

For our analysis it is convenient to represent the number M in terms of prime numbers,
Pj ,

M =
N∏

j=1

P
nj

j , Pj �= Pi, j �= i, (7)

where the nj are integers, and more concisely we denote P
nj

j by mj, i.e.

M =
N∏

j=1

mj . (8)

We find thus that the greatest common divisor (gcd) among the mjs is 1:

gcd(mj ,mi) = 1, ∀j �= i, (9)

i.e. distinct mis are relatively prime. Our aim is to construct representations that reflect
explicitly this factorization of M. In our study of the kq representation [17–19] the above was
used to show that the number of kq representations, χ(M), having conjugate representations
that can be accommodated in the M-dimensional space, is simply related to the number of
distinct primes, N, that appear in M (cf equation (8)):

χ(M) = 2N−1. (10)

It should be noted that the familiar finite-dimensional Fourier representation is included in this
counting. This is reviewed in section 2. In section 3 we consider a novel representation, closely
related to the kq representation that we call q1q2 representation [19]. Here the relation between
the number of representations follows much the same reasoning as for the kq representation.
In section 4 we develop a representation that exhibits explicitly the number of prime numbers
that comprise M (cf equation (8)). It is in this section that the central point of this paper
is presented, i.e. we exhibit the inter-relation between the dimensionality of the space under
investigation and representations that reflect its prime number constituents. For the analysis in
this section we note that what was required above was less restrictive than having all the
involved numbers relatively prime, i.e. that among every pair of them equation (9) holds.
What is required is that the numbers are relatively prime numbers [mod M]. This is defined
as follows [18–20]: two numbers M1,M2 such that their product M1M2 = M are said to be
relatively prime [mod M] if the equation,

tM1 + sM2 = 0 [mod M] (11)

has, for the integers [s, t], only the trivial solution, viz s = M1, t = M2. (Note: from their
definition s = 1, . . . , M1 and t = 1, . . . ,M2.) This does not preclude a nontrivial common
divisor for M1 and M2. This more relaxed requirement allows representations, presented in this
section, wherein every prime number that makes up the dimensionality, M, can be associated
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with a subspace which may be labelled by an appropriate quantum number. In section 5 we
note the relation between the number of conjugate kq representations (which is the same as
the number of possible q1q2 (or k1k2) representations) and the number of solutions to the
equation x2 = 1 [mod M], which is used in number theory to factorize a given integer M into
two relatively prime factors. The last section, section 6, is devoted to some conclusions and
discussion.

2. The kq representation and factorization

Schwinger [2] noted that U and V , with their powers and products, generate M2 operators
which allow expressing all operators in terms of them. We shall study space dimensionalities,
Ms, which are not prime numbers, i.e. N > 1 in equation (8). We now briefly review our
previous results [18, 19] to introduce a somewhat different notation that is convenient for our
later generalization: consider bi-partitioning the product that represents M (equation (8)) into
two factors,

M = M1M2. (12)

Here M1 incorporates one part of the N factors of equation (8) and M2 contains the other part.
Our way of bi-partitioning implies that the two numbers, M1 and M2, are relatively prime,
viz. gcd(M1,M2) = 1. We now introduce

L1 = M

M1
, L2 = M

M2
.

In the case at hand we simply have L1 = M2, L2 = M1; however, in section 4 this definition
will prove very useful. L1 and L2 are also relatively prime mod M, cf equation (11), i.e. the
equation

sL1 + tL2 = 0 [mod M] (13)

has only the trivial solution for the integers [s, t], namely s = M1, t = M2. This implies that
the equation (we take c = 1),

x = sL1 + tL2 [mod M], x = 1, . . . ,M, s = 1, . . . ,M1, t = 1, . . . ,M2,

(14)

has a unique solution x for every pair [s, t], with x running over its whole range of M values.
We note that, in general, the pair [s, t] that corresponds to x = 1 is not [s = 1, t = 1]. We will
now show how to modify equation (14) to attain this simpler relation among the solutions.
Let us consider the replacements s → s ′N1 [mod M1], t → t ′N2 [mod M2] with N1 relative
prime to L2 and N2 relative prime to L1. Such replacements retain a unique correspondence
s ↔ s ′ [mod M1] and t ↔ t ′ [mod M2].3 In these new variables equation (14) is

x = s ′N1L1 + t ′N2L2 [mod M], x = 1, . . . ,M,

s ′ = 1, . . . ,M1, t ′ = 1, . . . , M2.
(15)

We may now choose the Ni to assure that the solution x = 1 corresponds to the pair
[s ′ = 1, t ′ = 1] by solving

1 = N1L1 + N2L2 [mod M],

i.e. [20]

N2 = L−1
2 [mod M2] and N1 = L−1

1 [mod M1]. (16)

3 An illustrative example is: L1 = 5, L2 = 3;N1 = 2, N2 = 2 which leads to the correspondences
s = 1, 2, 3 ↔ s′ = 2, 1, 3; t = 1, 2, 3, 4, 5 ↔ t ′ = 3, 1, 4, 2, 5.
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Now equation (14) can be rewritten with the solution x = 1 corresponding to s = t = 1 as

x = sN1L1 + tN2L2 [mod M]. (17)

An alternative presentation of the above which will be useful in later sections is as follows:
recalling that L1 and L2 are relatively prime [mod M] equation (14) may be regarded as the
solution of a set of two congruences,

x = s [mod M1] x = t [mod M2]. (18)

The solution of these is [20]

x = sN1L1 + tN2L2 [mod M]. (19)

To define a kq representation, we use the two commuting operators [17, 18]

τ(M2) = ei( 2π
M2

)x
, T (N1L1) = eipN1L1 . (20)

Since N1L1 = 1 [mod M1], the equation [eipN1L1 ]M1 = 1 is a minimal equation (i.e., M1

is the smallest number for which it is satisfied). Therefore the eigenvalues of T (N1L1)

are ei 2π
M1

k
, k = 1, . . . ,M1. (In [18] we used eipM2 instead of the present T (N1L1); these

two operators have the same eigenvalues and eigenstates, but enumerated differently. The
advantage of T (N1L1) is that it shifts the eigenvalues of τ(M1) (see equation (22)) by unity
whereas eipM2 shifts them by M2.) The common eigenvectors of these operators are given by

τ(M2)|k1, q2〉 = ei 2π
M2

q2 |k1, q2〉 T (N1L1)|k1, q2〉 = ei 2π
M1

k1 |k1, q2〉. (21)

They define an M-dimensional kq representation that is associated with the particular
factorization M = M1M2. The indices are always associated with the range of the variable,
thus, e.g. q2 = 1, . . . ,M2. In the following we shall omit, unless clarity requires otherwise,
the numerical indices of q and k, i.e. q2 → q, k1 → k, with similar omission for such indices
which will be introduced later. It should be noted that in this notation operators of different
indices commute as is illustrated in equation (20). To construct the conjugate vector basis [18]
we consider the conjugate pair of (commuting) operators:

τ(M1) = ei( 2π
M1

)x
, T (N2L2) = eipN2L2 , (22)

and their eigenfunctions

τ(M1)|K2,Q1〉 = ei( 2π
M1

)Q1 |K2,Q1〉, Q1 = 1, . . . ,M1,

T (N2L2)|K2,Q1〉 = ei( 2π
M2

)K2 |K2,Q1〉, K2 = 1, . . . ,M2.
(23)

The basic commutation relations for our operators are

T (N1L1)τ (M1) = τ(M1)T (N1L1) ei( 2π
M1

)
,

T (N2L2)τ (M2) = τ(M2)T (N2L2) ei( 2π
M2

)
,

(24)

with all other operators commuting. Hence we have

T (N1L1)τ (M1)|k, q〉 = ei( 2π
M1

) ei( 2π
M1

)k
τ (M1)|k, q〉, (25)

indicating that τ(M1)|k, q〉 is, up to a phase factor, |k +1, q〉. In a similar fashion one can show
that T (N1L1)|K,Q〉 is, again up to a phase factor, |K,Q − 1〉. The two other operators are
also shift operators for the appropriate states. Now, since k is defined mod M1 and q is defined
mod M2, successive application of either (and both) τ(M1), T (N2L2) on any one vector |k, q〉
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will generate, uniquely, all the vectors in the set |k, q〉. Thus all the states of one set may be
generated by the operators of the other set4.

Returning to our factorization of M in terms of relative primes, equation (8), we find
that only bi-partitionings of the N primes are allowed: P n may not be split by breaking it
up into two powers, say P n1 and P n2 , n = n1 + n2 with one factor in M1 and the other in
M2, i.e., the bi-partitionings are among the groups of mis (equation (8)). Thus the number of
kq representations that form a complete operator basis for an M-dimensional physical system
equals the number of possible bi-partitionings of M into products of distinct primes that make
M (equation (8)), i.e., 2N−1 [18].

To conclude this section we give a new derivation for the overlap 〈kq|KQ〉: recalling our
discussion above, we supplement equation (21) with

τ(M1)|k, q〉 = |k + 1, q〉 and T (N2L2)|k, q〉 = |k, q − 1〉, (26)

and equation (23) with

τ(M2)|K,Q〉 = |K + 1,Q〉 and T (N1L1)|K,Q〉 = |K,Q − 1〉. (27)

These are valid up to phases that are conveniently chosen to be null [2]. We now evaluate
〈kq|A|KQ〉, where A stands for each of the four operators that generate the complete operator
basis for the case under study,

τ(M1), T (N1L1), τ (M2) and T (N2L2).

This leads to the four relations

ei 2π
M2

q〈kq|KQ〉 = 〈kq|K + 1,Q〉, ei 2π
M1

Q〈kq|KQ〉 = 〈k − 1, q|K,Q〉,
ei 2π

M1
k〈kq|KQ〉 = 〈k, q|K,Q − 1〉, ei 2π

M2
K〈k, q|KQ〉 = 〈k, q + 1|KQ〉.

(28)

These are solved by

〈kq|KQ〉 = ei(KqM1−kQM2)
2π
M√

M
, (29)

which implies the conjugacy of the two vector bases [13, 14].

3. The q1q2 representation

The choice of the two unitary commuting operators τ(M2) and T (N1L1) (equation (21)) as
those that define our vector space basis, i.e. the choice of a kq representation to study the
system, is optional. An alternative choice is the two unitary and commuting operators τ(M2)

and τ(M1) [19]. We now discuss such a choice—it leads to the representation that we choose
to call the q1q2 representation, since its labels may be considered as designating the spatial

4 It is via this attribute that the necessity of having M1 and M2 as relative primes emerges. If M1 and M2 have
a common factor the |k, q〉 set defined by τ(M2) and T (N1L1) is complete. Thus, to have a kq representation
what is required is that M is not a prime number. To have conjugate kq representations it is necessary that M be
factorized into a product of two relative primes. To illustrate this consider an example with M = 12 bi-factorized by
M1 = 2,M2 = 6. One can readily check that applying τ(M1) and T (L2) will shift both k and q by multiples of 2
only. In this case we may consider the operator

F = λ1

∑
k,q=even

|k, q〉〈k, q| + λ2

∑
k,q=odd

|k, q〉〈k, q|, λ1 �= λ2.

This operator commutes with τ(M2) and T (L1), and with τ(M1) and T (L2), while it is not a multiple of the unit
operator. Hence in cases where the bi-factorization involves numbers which are not relatively prime, one is not led
to a complete operator basis. Thus the bi-factorization must be without having the same prime (cf equation (8))
occurring in both terms.
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coordinates. This representation is closely related to the kq representation. It exists only
when M1 and M2 are relatively prime, in which case the kq representation has a conjugate KQ
representation. The common eigenfunctions of τ(M1) and τ(M2) are |q1, q2〉. Thus, with

τ(M1) = ei 2π
M1

x = τ(M)M2 τ(M2) = ei 2π
M2

x = τ(M)M1 , (30)

the eigenvector equations are

τ(M1)|q1, q2〉 = ei 2π
M1

q1 |q1, q2〉, q1 = 1, . . . ,M1,

τ (M2)|q1, q2〉 = ei 2π
M2

q2 |q1, q2〉, q2 = 1, . . . ,M2.
(31)

These provide an alternative vector basis for the M-dimensional space. The complete
operator basis includes, in addition, the unitary operators,

T (N1L1) and T (N2L2).

The eigenvector equations for these operators are

T (N1L1)|k1, k2〉 = ei 2π
M1

k1 |k1, k2〉, T (N2L2)|k1, k2〉 = ei 2π
M2

k2 |k1, k2〉. (32)

These, too, span the space and form the conjugate vector basis to |q1, q2〉. A convenient way
to demonstrate this is by showing that the absolute value of the overlap of any member of one
basis with any member of the other one is independent of either vector [13, 14]. We may get
the expression for the overlap 〈q1, q2|k1, k2〉 in much the same way that we got equation (29).
The result is

〈q1, q2|k1, k2〉 = ei(q1k1M2+q2k2M1)
2π
M√

M
, (33)

assuring that the two vector bases are conjugate.
We now obtain the overlap 〈x|q1, q2〉 where |x〉 is the eigenvector of τ(M) with the

eigenvalue ei 2π
M

x. The method is similar to the one we used above for the overlap of the vectors
belonging to conjugate vector bases. Thus, since τ(M1) = [τ(M)]M2 , we have

〈x|τ(M1)|q1, q2〉 = 〈x|q1, q2〉 ei 2π
M1

q1 = 〈x|[τ(M)]M2 |q1, q2〉 = ei 2π
M1

x〈x|q1, q2〉. (34)

Using a similar equation with τ(M2) replacing τ(M1), we obtain

x = q1[mod M1], x = q2[mod M2]. (35)

Noting that gcd(M1,M2) = 1 and using the Chinese remainder theorem [20, 21], we have
that the unique solution is

x = q1N1L1 + q2N2L2[mod M]. (36)

Here Ni = L−1
i [mod Mi], i = 1, 2 (cf equation (16)). Thus we obtain

〈x|q1, q2〉 = �(x − q1N1L1 − q2N2L2), (37)

with �(y) = 1 when y = 0 [mod M], and is zero otherwise. The relation for the conjugate
vector basis |k1, k2〉 can be handled similarly and we get

〈p|k1, k2〉 = �(p − k1L1 − k2L2). (38)

We now comment briefly on some localization attributes of wavefunctions when described
in this representation. We consider a state |ψ〉 that is smeared over one spatial label but is
localized in the other:

〈q1, q2|ψ〉 = δq1,M1√
M2

. (39)

In the k1k2 space we have

〈k1k2|ψ〉 = 1√
MM2

�q2 e2π i( q2k2
M2

) = δk2,M2√
M1

. (40)

Thus states spread over q2 and localized in q1 are, in the conjugate basis, spread in k1 and
localized in k2, with the localization exhibiting the factorization of M.
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4. Complete factorization

We now proceed and obtain a representation in which each prime number in the expression
for M (cf equation (8)) has characteristics of a degree of freedom [2]. We define

Lj ≡
∏
k �=j

P
nk

k = M

mj

, mj = P
nj

j . (41)

Now consider

τ(mj ) = τ(M)Lj = Uj = e
i 2π
mj

x
, T (NjLj ) = T (c)Nj Lj = Vj = eiNj Lj p. (42)

We have clearly

U
mj

j = V
mj

j = 1, (43)

which defines the dimensionality of the relevant coordinates (see below), and

UiUj = UjUi, ViVj = VjVi, and ViUj = UjVi, ∀i �= j. (44)

However (cf [2])

ViUi = UiVi ei 2π
mi . (45)

We define the N-indexed wavefunction |q1, . . . , qN 〉 as the eigenfunction of the N (commuting)
operators τ(mj ), j = 1, . . . N :

τ(mj )|q1, . . . qj , . . . , qN 〉 ≡ Uj |q1, . . . qj , . . . , qN 〉
= e

i 2π
mj

qj |q1, . . . qj , . . . , qN 〉, qj = 1, . . . , mj . (46)

Since the mjs are relatively prime and the equation τ(mj )
mj = 1 is a minimal equation, the

mj eigenfunctions of τ(mj ) are distinct and different for each index j. We now relate this
wavefunction to the eigenfunction of τ(M) by the same procedure that we used above: we
establish the correspondence between the M eigenvectors of τ(M) and those of τ(mj ). We
have N equations of the form

〈x|ei 2π
mj

x |q1, . . . qj , . . . qN 〉 = e
i 2π
mj

qj 〈x|q1, . . . qj , . . . qN 〉
= 〈x|[ei 2π

M
x
]Lj |q1, . . . qj , . . . qN 〉 = e

i 2π
mj

x〈x|q1, . . . qj , . . . qN 〉. (47)

Thus we must have

x = q1 [mod m1]

x = q2 [mod m2]

· · ·
x = qN [mod mN ].

(48)

Since gcd(mi,mj ) = 1, for all i �= j, we have by the Chinese remainder theorem [20, 21]
that

〈x|q1, . . . qj , . . . qN 〉 = �
(
x − �N

j=1qjNjLj

)
. (49)

This associates each of the M values of x with a unique set of the qj s.

The M eigenvectors of the commuting operators T (NjLj ), j = 1, . . . , N , satisfy

T (NjLj )|k1, . . . , kj , . . . , kN 〉 = e
i 2π
mj

kj |k1, . . . , kj , . . . , kN 〉, kj = 1, . . . , mj . (50)

By a procedure analogous to that used above to derive equation (49), we get here

〈p|k1, . . . , kN 〉 = �
(
p − �N

j=1kjLj

)
. (51)
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The overlap is evaluated to be

〈k1 · · · kN |q1 · · · qN 〉 = ei(
∑N

j=1 kj qj Lj )
2π
M√

M
. (52)

In the above, the conjugate vector bases representations |q1, . . . qj , . . . qN 〉and |k1, . . . ,

kj , . . . , kN 〉 exhibit the prime numbers constituents of M. Each index j may be viewed as
defining a subspace that is associated with the prime Pj . We refer to this representation as the
completely factorized representation.

5. Characterization of factorization

In this section we characterize the possible bi-factorizations of M into two relative primes
by the roots of an equation implied by the Chinese remainder theorem. In principle one
might expect that such a process could be reversed, i.e. by noting the characteristics of the
factorizable physical system, given in some space dimensionality M, one may deduce the
factors involved. However we address ourselves to the former issue. Thus we will show, in
parallel with number theory analysis, that the eigenvalues of unitary operators which form a
complete operator basis [2] for a given space dimensionality, M, reflect the factors that make
up the number M.

Our analysis above and, in particular, the completely factorized representation as such,
allows viewing the N distinct prime constituents of M, equation (8), as N degrees of freedom
(cf [2, 14, 22]). Now the relation between |x〉, the eigenfunction of τ(M) which deals with the
space as a whole (equation (4)), and the eigenfunction |q1, . . . , qN 〉 of the τ(mr), that reflects
the subspaces, each associated with a particular prime Pr (and dimensionality mr ) is given by
equation (49)

〈x|q1, . . . qN 〉 = �(x − q1N1L1 − q2N2L2 − · · · − qNNNLN).

As was noted in the previous section, this equation brings into our analysis the results of
the Chinese remainder theorem [20, 21]. This theorem implies the following

x = 1 [mod M] ⇔ qr = 1 [mod mr ], for all r

x2 = 1 [mod M] ⇔ q2
r = 1 [mod mr ], for all r.

(53)

The equation x2 = 1 [mod M] has several solutions. We will henceforth designate the
solutions by as. We have immediately that, if as is a solution, namely a2

s = 1 [mod M], so
is −as, i.e. the solutions appear in pairs.

We now argue that the number of pairs of solutions is 2N−1. Thus we may associate each
solution with a conjugate pair of the kq-representation (or equivalently with the q1q2 and k1k2

representations) that can be accommodated in M dimensions. The trivial solution, as = 1, is
always (i.e. even if M is (power of) prime) present. It corresponds to the trivial factorization,
M = 1 · M that we associate with the Fourier representation [18, 19]. We now show that
the number of solutions to x2 = 1 [mod M] equals 2N−1. The proof is direct: equation (53)
implies that

x2 = 1 [mod M] ⇒ qr = ±1 [mod mr ] for r = 1, . . . , N.

This gives 2N possibilities. But only half of these are distinct since the two solutions as = ±1
give equivalent factorization but in a reverse order (if as satisfies (as +1)(as −1) = 0 [mod M],
then −as satisfies (as − 1)(as + 1) = 0 [mod M]), and as the order of the factors is immaterial
the two lead to one bi-factorization. Note that similar reasoning introduces a factor 1/2 in
counting the number of conjugate kq-representations; there this was interpreted as having
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each distinct bi-factorization leading to a distinct conjugate pair of vector bases—the kq and
KQ [18]. Thus 2N−1 gives the number of kq conjugate pairs and the number of solutions of
x2 = 1 [mod M], both expressing the bi-factorization of M into relatively prime numbers.

To clarify the above we now consider, in some detail, a simple example: let M = 105 =
3 × 5 × 7. Thus we have

m1 = 3, N1 = 2, L1 = 35,

m2 = 5, N2 = 1, L2 = 21,

m3 = 7, N3 = 1, L3 = 15.

(54)

There are 22 = 4 pairs of (distinct) solutions

q1 = q2 = q3 = 1,⇒ a1 = 1 [mod 105],

q1 = q2 = 1, q3 = −1,⇒ a2 = 76 [mod 105],

q1 = 1, q2 = q3 = −1,⇒ a3 = 34 [mod 105],

q1 = q3 = 1, q2 = −1,⇒ a4 = 64 [mod 105].

(55)

The four other solutions may be obtained by reversing the signs of the as which is obtained
by changing the signs of all three qr in each set. One can readily check that a2

s = 1 [mod 105]
in all cases. Now we have that for each s (s = 2, 3, 4)

(as + 1)(as − 1) = 0 [mod 105].

Inserting the values of the as from s = 2 to s = 4 (skipping the trivial case of s = 1) we get
the following expressions for (as + 1)(as − 1):

s = 2 : 5 × 11(15)(7), s = 3 : 11(15)(7), s = 4 : 3 × 13(21)(5), (56)

all evidently zero [mod 105]. We see that every distinct root leads to a distinct bi-factorization.
Since the bi-factors must be distinct in every case, so must be the as.

To summarize, we have shown that among the eigenstates of the completely factorized
representation, those distinguished by qj = ±1(j = 1, . . . N) correspond uniquely to the
relatively prime bi-factorization of M.

6. Conclusions and discussion

Considerable effort in the study of finite-dimensional quantum mechanics can be traced to
the so-called state determination problem (e.g. [8, 14, 15, 22–24] and references therein)
namely: what is the minimal set of measurements needed to determine a state? The efficient
measurements are expected to be those that are mutually unbiased [24, 25]. These studies
specify the mutually conjugate (i.e. mutually unbiased) complete, orthonormal, vector bases
that can be accommodated in a finite-dimensional space. Such a characterization has also
attractive applications in cryptography [3]. In these studies a dimensionality, M, which is a
prime number (or a power of a prime number) allows complete and direct results [24, 25]. In
this paper we considered an almost diametrically opposite problem: the dimensionalities of
interest are composite numbers (i.e. factorizable into distinct primes and their powers). Among
these factors we show how to define pairs of conjugate bases. Thereby we, hopefully, provide
an approach that will help to understand why a quantum computer can be more efficient in the
factorization problem.

Shor’s discovery [12] of an algorithm for factorization with quantum computers forms a
central step in the development of quantum information theory. The number theoretic basis of
the factorization method in Shor’s algorithm has been studied extensively [20]. In this paper
we give what may be viewed as a study of the physics of factorization, i.e. the inter-relation



Factorizations and physical representations 5161

between the dimensionality of the space under investigation and the representations that reflect
its prime number constituents. To this end we elaborate on Schwinger’s [2] analysis of unitary
operator bases for finite-dimensional Hilbert spaces and show, in what we consider to be a
physical language, that a natural representation is available which exhibits the prime number
constituents of M. In such a representation each of the N prime numbers present in the prime
factorization of M defines a subspace. We give the operator basis acting in such subspaces. We
further show that different, when possible, bi-factorizations of M may be viewed as different
conjugate pairs of vector bases that may be associated with the kq representations [17, 18], or
q1q2 and k1k2 representations. It was shown that the factorization of the dimensionality of the
space as a number is equivalent to the break-up of the space into subspaces. Each subspace is
viewed as representing a distinct degree of freedom reflecting a prime number that is among
the prime constituents of M.
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